Прочность бетона (на растяжение, при сжатии): от чего зависит, как определить

Испытание бетона на прочность, минимальные размеры образцов

Проверка смеси позволяет определить соответствие возводимой конструкции техническим характеристикам с соблюдением положений СНиП и ГОСТ. Проводится в лаборатории.

К погрешности измерений приводит:

  • влажность исследуемого материала;
  • неравномерный состав раствора;
  • промасливание внешнего слоя;
  • армирование металлическими прутьями;
  • сколы, трещины и другие дефекты поверхности основания;
  • проведение исследования неисправным прибором.

После проведенных исследований составляется «Документ о качестве бетонной смеси». Он применяется подрядчиком при возведении зданий.

Класс бетона устанавливают на образцах размером 150х150 мм, которые отливаются в лабораторных условиях и затвердевают 28 суток. Они подвергаются нарастающему воздействию до момента разрушения (ГОСТ 10180-90). Предельное сжатие фиксируется.

На основании чего устанавливается класс

По классификации, принятой в Советском Союзе, бетон, как и цемент, разделялся по показателю прочности на марки. Она отражает максимальную степень сжатия, которую основание выдерживает без деформации. Это средний (лабораторный) показатель, измеряется в кгс/см2. Он показывает технические свойства раствора и количество цемента в его составе. В настоящее время используются европейские стандарты.

Классом называется нагрузка, которую бетон способен выдержать до своего разрушения. Этот параметр определяет фактическую прочность материала, показывает точность в 95%. Зависит от технологии, применяемой на производстве. Его указывают в проектных документах. Имеет маркировку «В» и индекс от 5 до 60. Измеряется в мегапаскалях (МПа).

Таблица соответствия по прочности (ГОСТ 26633-91).

КлассМаркаПрименение
В 3,5М 50Подготовительные работы
В 5М 75
В 7,5М 100
В 10М 150Стяжки, дорожки
В 12,5М 150
В 15М 200Двухэтажные здания, лестницы, монолитные стены
В 20М 250
В 22,5М 300
В 25М 350Железобетонные изделия, бассейны, многоэтажные дома
В 27,5М 350
В 30М 400Мосты, дамбы
В 35М 450
В 40М 550Гидротехнические сооружения, метро, мосты, плотины, хранилища
В 45М 600
В 50М 700
В 55М 750Подземные бункеры, бомбоубежища, в том числе от радиационных поражений
В 60М 800
В 65М 900
В 70М 900
В 75М 1000
В 80М 1000

Применение бетона в зависимости от класса прочности

Лучше всего прочность материала характеризует класс бетона. В отличие от марки, указывающей среднее значение предела сжатия, в этом названии содержатся максимальные значения показателя с погрешностью не больше 5%. Так, маркировка у бетона B15 означает, что при испытании на сжатие, среди 100 сделанных из этого материала образцов не меньше 95 будут иметь прочность выше 15 МПа.

От класса прочности зависит применение бетона для решения определённых задач:

  • B7.5 – бетон с небольшим содержанием цемента и невысокой прочностью, подходящий только для создания прослойки под железобетонные фундаментные плиты;
  • B10 и B12.5 – материал, подходящий не только для создания основания под железобетон, но и для устройства фундаментов конструкций с небольшим весом;
  • B15 и B20 – бетон, который применяют при возведении небольших построек, для изготовления лестничных маршей и перегородок;
  • B22.5 – строительный материал, применяемый в малоэтажном строительстве и для производства железобетонных конструкций;
  • B25 – бетон, подходящий для изготовления элементов многоэтажных домов, которые будут находиться под высокой нагрузкой – таких как плиты, несущие балки и даже колонны.

Таблица классификации бетона и маркировки, в зависимости от показателя прочности на сжатие.

Материалы с повышенной прочностью типа B30 и B40 применяют для сооружения ответственных объектов, к качеству которых предъявляются особые требования. В том числе, для банковских хранилищ, гидротехнических сооружений, бассейнов и мостов. Бетоны особой прочности, такие как B45 и ещё более высокого класса, используют для заливки мостовых опор, стратегических и военных объектов.

Наши клиенты

Заказчик: ООО «АЛЬФА»
Объект: Многоквартирный жилой дом.
Адрес: г. Москва, ул. Кастанаевская, 44-46. Корпус 2.
Период: 2019 – 2020 г.

Заказчик: ООО «Брянскагрострой»
Объект: «Мираторг»
Адрес: Московская область, г. Домодедово.
Период: 2018 – 2020 г.

Заказчик: ООО «СК СтройГрупп»
Объект: Общежитие МГИМО.
Адрес: г. Москва, Проспект Вернадского 76.
Период: 2017 – 2020 г.

ООО «Строй-Сервис»
Объект: Многоквартирный жилой дом.
Адрес: г. Москва, ул. Вавилова, д.52.
Период: 2017 – 2018 г.

Заказчик: ООО «ТЭР»
Объект: ТЭЦ-22
Адрес: г. Дзержинский, ул. Энергетиков
Период: 2017 – 2021 г.

Заказчик: ООО «Глобальный Горизонт»
Объект: Усиление железнодорожного полотна.
Адрес: г. Москва, г. Санкт-Петербург, г. Пермь.
Период: 2019 г.

Методы контроля

Существует несколько методов проверки качества ЖБК и каждый из них имеет как свои плюсы, так и некоторые ограничения в применении.

Контроль линейных размеров

Очень простой метод, который заключается в контроле линейных размеров конструкций, а также насколько они соответствуют допустимым отклонениям по вертикали и горизонтали. Применяя этот метод, используют измерительные инструменты (рулетку, линейку, штангенциркуль) и геодезические приборы (нивелир и теодолит).

Измерение прочности и однородности

Чтобы определить прочность бетона, а также однородность его структуры применяют следующие методы:

  • осуществляют местные частичные разрушения (скалывание небольшого куска или ребра, отрыв приклеенных металлических дисков);
  • производят искусственные ударные воздействия: при этом измеряют силу удара и величину отскока;
  • применяют ультразвук.

Все неразрушающие методы контроля прочности бетона хорошо себя зарекомендовали, но полученные с помощью них результаты имеют погрешность, так как точность измеряемых показаний зависит от:

  • влажности изделия;
  • температуры;
  • срока эксплуатации бетона;
  • марки бетона;
  • условий заливки, трамбовки и схватывания;
  • разновидностей пластификаторов.

Осуществление местных разрушений

Производя отрыв со скалыванием, измеряют сопротивление бетона в момент, когда происходит отрыв его фрагмента с помощью анкерного устройства. Используя этот метод, получают довольно точные результаты, но он является трудоемким.

Важно! Подобный метод нельзя использовать при работе со слишком тонкими конструкциями и с густоармированными стенами. Если надо продиагностировать качество свай, опорных колонн или балок, то чаще всего применяют метод скалывания ребра. При применении данного метода нет необходимости высверливать какие-либо отверстия или проводить дополнительные подготовительные мероприятия

При применении данного метода нет необходимости высверливать какие-либо отверстия или проводить дополнительные подготовительные мероприятия

Если надо продиагностировать качество свай, опорных колонн или балок, то чаще всего применяют метод скалывания ребра. При применении данного метода нет необходимости высверливать какие-либо отверстия или проводить дополнительные подготовительные мероприятия.

Важно! Если толщина защитного слоя составляет менее 20 мм, то использовать этот метод не рекомендуется. Метод стальных дисков заключается в отрыве ранее приклеенных металлических дисков (за 6÷12 часов до начала проверки: зависит от клеящего состава). Данный метод применяют в том случае, если нет возможности использовать два предыдущих из-за различных ограничений

Данный метод применяют в том случае, если нет возможности использовать два предыдущих из-за различных ограничений

Метод стальных дисков заключается в отрыве ранее приклеенных металлических дисков (за 6÷12 часов до начала проверки: зависит от клеящего состава). Данный метод применяют в том случае, если нет возможности использовать два предыдущих из-за различных ограничений.

Все три метода имеют несколько минусов:

  • в процессе работ происходит частичное разрушение стены;
  • до начала работ необходимо определить, на какую глубину заложены арматурные прутья, а также их количество;
  • работы отличаются длительностью и трудоемкостью.

Метод ударного воздействия

Самый широко применяемый метод диагностики, при котором измеряют энергию удара (в момент, когда ударный элемент прикасается к бетонной поверхности). Использование данного метода позволяет получить информацию о классе бетона, его прочности, упругости; качестве уплотнения материала и его однородности. Делают несколько замеров и высчитывают средний показатель.

Сутью метода упругого отскока является измерение длины отскока ударника после его соприкосновения с бетоном. В данном случае производят измерение не только прочности материала, но и его твердости с помощью склерометра.

Используя метод пластической деформации, измеряют размеры отпечатка, который образуется в результате удара шарика из стали о поверхность бетона. Этот способ довольно востребован (из-за невысокой стоимости оборудования), но считается уже устаревшим.

Метод ультразвуковой диагностики

Используя этот метод, проверяют прочность бетона всей конструкции, а также насколько качественно произведено бетонирование; определяют глубину и размер трещин, а также выявляют наличие каких-либо дефектов. С помощью специальных датчиков осуществляют прозвучивание (поверхностное и сквозное). Минусом данного метода является то, что он непригоден для осуществления проверки прочности высокопрочных бетонов.

Определение прочности бетона на осевое растяжение

Основными предпосылками для испытания бетона на осевое растяжение выступают использование в перекрытиях и основаниях конструкционного бетона, а также использование гидротехнического раствора. Прочность определяется величиной сопротивления растяжению на оси или прочности на осевом растяжении. Обозначается сочетанием букв «Rt» и определяется по методике ГОСТ 10180-2012. Основные постулаты испытаний сохраняются, т.к. они аналогичны указанным параметрам во второй части десятого пункта.Чтобы определить прочность на осевом растяжении, используются стандартные образцы 8-ки в 3-х вариантах. Рабочее сечение равняется 10*10 см и 15*15 см (это базовый экземпляр), а также 20*20 см.

Алгоритм проведения испытаний

Выбранный образец крепится таким образом: ось образца должна проходить в центре каждого из захватов. Нагрузка подается постоянно с усилием, равным показателю 52 кПа/с, до полного уничтожения образца.

Как рассчитывать?

Для данного показателя важна и марка цемента, на основе которого производится материал.

Крепость обуславливается многочисленными факторами, но первоочередно зависит от цементной марки Rц и обстоятельств застывания. Учитывая, что качество заполнителей для бетона соответствует запросам, описанным в ГОСТ 10268–80, то прочность материала, зависимая от марки и В/Ц, выражается формулой: Rб = ARц (Ц/В — 0,5), где:

  • Rб — бетонная крепость за 28 сут., МПа;
  • А — показатель, зависящий от наполнителей и их качества;
  • Rц — марка;
  • Ц/В — соотношение цемента и воды в составе (цифра, противоположная В/Ц).

или cкачать в PDF (1 MB)

Динамика набора прочности тяжелого бетона: n = 100 * (lg (n) / lg (28)), где n — день, на который желательно определить крепость цемента (но не меньше 3 дней). При обстоятельствах застывания, отличающихся от обычных, особенно по температурным режимам, нужно знать, что уменьшение температуры способствует торможению твердения, а повышение — ускорению. При показателях 10 градусов по Цельсию, спустя 7 сут. цемент будет иметь крепость 40—50%, а при 5 °C — 31—34%. При отрицательных температурах бетоны без специальных добавок вовсе не крепнут.

Формула для вычисления

Чтобы провести расчет прочности бетона на растяжение при изгибе применяют формулу: Rи = 0,1 • P • L / b • h2, где: L — расстояние между балками; Р — масса суммарной нагрузки и к ней добавляется вес бетона; h — высота и b — ширина балки по сечению. Обозначается сокращенно — Btb, и плюсуют число в диапазоне от 0,4 до 8. Прочность на растяжение высчитывают так: Rbt = 0,233 х R2. Показатели растяжения и изгиба существенно меньше, чем способность бетона выносить нагрузки.

Прочность на сжатие

На прочностные характеристики бетона оказывает влияние вид напряженного состояния материала, который может сжиматься, растягиваться и изгибаться. Одним из основных параметров считается прочность на сжатие, определяющая устойчивость к вертикально направленной нагрузке и давлению. Именно её следует учитывать, выбирая, какой бетон будет использован для строительства. Параметр отображается в классе материала – указанная там кубиковая прочность измеряется в МПа. Марка бетона обозначает его предел сжатия в кгс/см2.

При расчёте железобетона используются другие параметры и формулы. Форма железобетонных конструкций отличается от куба, потому для определения устойчивости материала к нагрузкам используют не кубиковую, а призменную прочность, для того чтобы приблизить напряженное состояния к реальным. Также в них учитывается предел текучести класса арматуры, применяемого для армирования.

Проверка стандартных образцов

Процедура определения прочности бетона.

Прочность бетонной смеси неразрывно связана со многими факторами. Она определяется несколькими методами, также необходим профессиональный прибор, который будет измерять технические характеристики. Методы определения прочности бетона разные. Рассмотрим самые популярные.

Испытание цемента на крепость проводят по контрольным образцам – это кубики или цилиндры из раствора. Бетон замешивают в строгих пропорциях и дают ему высохнуть 28 суток. После этого подготовленные контрольные образцы помещают в специальные приборы, например, пресс, и сжатием пытаются их разрушить.

Еще один популярный разрушающий метод – исследование кернов. Из уже готового застывшего бетонного сооружения вырубают или пытаются выбурить монолит. Кусок такого продукта отправляют на лабораторные тесты для испытания бетона (например, разрушающее испытание бетона под прессом).

Обычно монолит бурят с помощью алмазных корок, это позволяет провести процесс без вреда для конструкции. Но помните, что такие разрушающие методы исследования бетона на прочность дорогие. Также образец сложно извлечь, а если сделать это неправильно, то можно серьезно навредить конструкции.

Для определения устойчивости можно использовать неразрушающие методы. Суть этой работы заключается в том, что специалисты измеряют предел прочности бетона, а другие показатели, которые связаны между собой и влияют на этот фактор. Способы проведения неразрушающего контроля требуют больших трудоемких затрат, при этом они не всегда точные. Но все же большинство массовых и частичных инженерных задач можно решить неразрушающими методами.

Контроль прочности бетона

Для того, чтобы бетонный раствор точно соответствовал указанным параметрам и выдерживал нагрузки, за его качеством следят еще на этапе приготовления. Прежде, чем готовить смесь, обязательно изучают рецепт, требования к компонентам и их пропорциям.

Основные критерии для контроля и проверки бетона:

  • Соответствие используемого цемента указанным в рецепте маркам — так, для приготовления бетона М300 точно не подойдет цемент М100, даже при условии его большого объема. Чем выше число рядом с буквой М в маркировке цемента, тем более прочным получится раствор.
  • Объем жидкости в растворе — чем больше воды в смеси, тем активнее влага испаряется в процессе высыхания и может провоцировать появление пустот, когда идет затвердевание.
  • Качество и фракция наполнителей — шероховатые частицы неправильной формы обеспечивают наиболее крепкое сцепление ингредиентов в составе бетона, что в процессе твердения дает требуемый результат в виде высокой прочности. Грязный наполнитель может понизить характеристики бетона по прочности на растяжение и сжатие.
  • Тщательность смешивания компонентов на всех стадиях приготовления раствора — по технологии раствор замешивается в исправной бетономешалке или на производстве в течение длительного времени.
  • Квалификация работников — также играет важную роль, так как даже при условии применения качественной смеси В20, к примеру, прочность может быть снижена из-за неправильной укладки, отсутствия уплотнения (вибрация обеспечивает повышение прочности бетона на 30%).
  • Условия застывания и эксплуатации — лучше всего, когда бетон застывает и приобретает твердость при температуре воздуха +15-25 градусов и высокой влажности. В таком случае можно говорить о точном соответствии монолита его марке — если был залит бетон В15, то и демонстрировать будет его технические характеристики.

Прочность бетона: таблица

Бетон по прочности на растяжение, при изгибе, воздействии других нагрузок демонстрирует определенные значения. Далеко не всегда они соответствуют указанным в ГОСТе и проектной документации, часто есть погрешность, которая может быть губительной для монолита и всей конструкции или же не оказывать никакого воздействия.

Виды прочности бетона (на сжатие, изгиб, растяжение и т.д.):

  1. Проектная — та, что указывается в документах и предполагает значения при полной нагрузке на бетонную конструкцию. Считается в затвердевшем монолите, по истечении 28 дней после заливки.
  2. Нормированная — значение, которое определяется по техническим условиям или ГОСТу (идеальное).
  3. Фактическая — это среднее значение, полученное в результате выполненных испытаний.
  4. Требуемая — минимально подходящий показатель для эксплуатации, который устанавливается в лаборатории производств и предприятий.
  5. Отпускная — когда изделие уже можно отгружать потребителю.
  6. Распалубочная — наблюдается в момент, когда бетонное изделие можно доставать из форм.

Что влияет на прочность?

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Немного о структуре бетона

Окончательно структура бетона формируется по завершении его твердения, но итоговый результат зависит не только от условий окружающей среды. Вот что ещё влияет на прочность бетона и способствует формированию его структуры:

  1. вид, количество и активность вяжущего;
  2. гранулометрический состав компонентов;
  3. водоцементное соотношение и качество воды;
  4. качество уплотнения смеси.

Качественное уплотнение смеси — важнейший фактор структурообразования бетона

Что происходит при затворении вяжущего водой

В момент затворения цемента водой начинается реакция гидролиза, в результате которой из трехкальциевого силиката высвобождается насыщающий раствор гидроксид кальция. На второй стадии гидратации, наступающей примерно через час, начинается активное образование мелких гидросиликатов кальция, превращающих влагу в цементный гель. Чем больше их образуется, тем более плотным и водонепроницаемым становится внешний слой монолита.

  • Так называемый скрытый период гидратации длится не более 3 часов, в течение которых цементное тесто под воздействием сил притяжения частиц вяжущего начинает приобретать подвижность и связность. Оболочки цементных зёрен активно поглощают влагу, толщина прослоек воды уменьшается, и постепенно подвижность бетонной смеси начинает снижаться.
  • На третьей стадии гидратации гидроксид кальция в растворе начинает кристаллизоваться, причём происходит это очень интенсивно. Начинают расти и занимать пространство между частицами цемента пластинки и волокна гидросиликатов кальция, разделяя поры, создавая и усиливая пространственные связи.

Взгляд через микроскоп: образование минерала эттрингита в бетоне

  • Цементное тесто уже не просто схватывается, но и затвердевает, образуя цементный камень. Его структура получается хоть и жёсткой, но поначалу очень рыхлой. Но так как процесс гидратации не останавливается, камень постепенно уплотняется, объёмы пор в нём уменьшаются, зёрна цемента срастаются, увеличивая прочность камня.
  • Структура бетона формируется от начала затворения смеси до момента активного возрастания прочности. Продолжительность этого периода называют сроком схватывания, и зависит он в основном от водоцементного соотношения теста. К концу этого периода формируется твёрдая матрица, состоящая из продуктов гидратации вяжущего, она и становится «несущим» каркасом, от которого зависит будущая структура готового бетона.
  • Хотя здесь уже наиболее значимое влияние оказывает заполнитель. Его присутствие сокращает сроки формирования структуры, и чем его больше, тем быстрее движется процесс из-за действия поверхностных сил. Заполнитель отвлекает воду, поэтому при проектировании состава бетона оптимальное водоцементное соотношение приходится определять с учётом потребности в воде щебня и песка.

Для получения бетона с правильной структурой, его укладка в опалубку и вибрация должны осуществляться до начала периода схватывания. Любые воздействия на смесь после начала схватывания влекут нарушение структуры бетона, и как следствие снижается его прочность.

Влияние структуры на прочность бетона

Существует множество видов бетонов, и у каждого своя структура. У тяжёлых бетонов она наиболее плотная, у лёгких тоже может быть плотной, но обязательно имеет пористые включения как в самом цементном камне, так и в заполнителе. Есть так же ячеистые бетоны, отличающиеся развитой системой закрытых или сообщающихся ячеек, и крупнопористые, имеющие зернистую структуру.

Представление о структурных особенностях того или иного вида бетона и позволяет правильно спроектировать состав. Каждая структура даёт возможность получить свои показатели плотности, а в прямой зависимости от неё находится и проектная прочность бетона. Так что в итоге, именно от структуры зависят прочностные характеристики образовавшегося камня.

Например, при зернистой (крупнопористой) структуре цементный камень будет иметь более низкую прочность, чем при ячеистой — даже если у двух образцов будет одинаковая плотность и одинаковый объём. Да и что удивительного, если показатели прочности могут немного отличаться даже в образцах, изготовленных из одного состава!

Подготовка кубиков для испытаний на сжатие

Виной тому неоднородность структуры камня, которая и провоцирует колебания прочности по сечению. Именно поэтому для определения марочной прочности бетона используют не один образец, а несколько, и берут за основу усреднённые данные.

Поделитесь в социальных сетях:FacebookTwitter
Напишите комментарий